

Artificial Intelligence

Lecture 8 – Expert Systems

Outline

● Knowledge representation: facts & rules
● Reasoning: forward chaining inference
● Examples of expert systems: MYCIN & XCON
● Implementing inference: rule matching and

conflict resolution
● Example: conflict resolution in CLIPS
● Applying expert systems
● Rule-based systems redux: business rules and

the semantic web

Expert Systems

● Expert systems are one of the simplest applications of
knowledge representation and reasoning

● Consists of a set of facts, a set of rules and an
implementation of the inference procedure

● Support reasoning about a particular (narrow) domain
in a tightly controlled way

● Wide range of applications including medical diagnosis,
minicomputer configuration, camera lens design, loan
approvals, fault diagnosis etc. - often as part of a larger
system

● One of the first commercial applications of AI

Advantages of Expert Systems

● Order or magnitude increases in the speed with
which complex tasks can be performed

● Increased quality of decisions or solutions (or
reduction in the number of errors)

● Reduction in cost and number of personnel
required and/or reduced training time (tasks are
de-skilled)

● Formalisation and retention of organisational or
business knowledge

Facts & Rules

● In an expert system, knowledge is represented as facts and rules
using a simplified form of predicate calculus

● Facts are ground (usually atomic) formulas, e.g., Man(Socrates),
stored in working memory

● Some facts are generic, while others are specific to a particular
problem instance

● Rules are universally quantified clauses - often with single
positive literal (definite clauses), e.g., ¬p ¬∨ q ∨ r ≡ (p ∧ q) → r

● A rule C
1
 … ∧ ∧ C

n
 → A consists of one or more conditions C

1
…

C
n
 and a single action A

● All variables appearing in C
1
…C

n
 and A are assumed to be

universally quantified

Inference

● Usually forward chaining (modus ponens) with
variable substitution

P(a), ∀x (P(x) → Q(x))

Q(a)

● For example, from the fact Man(socrates) and the
rule ∀x (Man(x) → Mortal(x)) we can derive that

Man(socrates), ∀x (Man(x) → Mortal(x))

Mortal(socrates)

using the substitution θ = {x/socrates}
● Inference is sound but (typically) not complete

Rule Syntax

● To simplify development, rules are often written in a
simplified form of English which omits the quantifiers

● For example, the rule (definite clause)

∀x, ∀y (PremiumCustomer(x) ^ LuxuryProduct(y) →
Discount(x, y, 7.5%))

might be written

IF PremiumCustomer(x) AND LuxuryProduct(y)
THEN Discount(x, y, 7.5%)

● Sometimes referred to as ‘production rules’, ‘if-then
rules’ or ‘condition action rules’

Inference Cycle

● At each cycle, the LHS of each rule (its antecedent) is
matched against the facts currently in working memory

● Matching involves comparing each condition in the LHS of
a rule in turn with each fact in working memory to see if a
unifying substitution can be found which satisfies all the
conditions

● Rules where all the conditions can be matched (and all
the variables bound) are said to be applicable

● The set of applicable rule instances is called the conflict
set

Inference Cycle

● One (or more) members of the conflict set are
‘fired’ which performs the action on the RHS of
the rule, e.g.:
● adds a fact (or facts) to working memory
● deletes a fact (or facts) from working memory
● produces a side effect, e.g., prints some output

● Cycle then repeats until one or more facts
(representing a solution to the problem) appear
in working memory or until no more rules can be
fired

Example

● Given the following facts and rules

F1 mother(Mary, Bob)

F2 mother(Mary, Alice)

F3 father(Bob, Chris)

R1 mother(x, z) ∧ parent(z, y) → grandmother(x, y)

R2 mother(x, y) → parent(x, y)

R3 father(x, y) → parent(x, y)

Example: Inference Cycle 1

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris)]

R1 no match

R2 {x/Mary, y/Bob}, {x/Mary, y/Alice}

R3 {x/Bob, y/Chris}

Conflict set =

[R2:{x/Mary, y/Bob}, R2:{x/Mary, y/Alice}, R3:{x/Bob, y/Chris}]

Example: Inference Cycle 2

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob)]

R1 no match

R2 {x/Mary, y/Alice}

R3 {x/Bob, y/Chris}

Conflict set = [R2:{x/Mary, y/Alice}, R3:{x/Bob, y/Chris}]

Example: Inference Cycle 3

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice)]

R1 no match

R2 no match

R3 {x/Bob, y/Chris}

Conflict set = [R3:{x/Bob, y/Chris}]

Example: Inference Cycle 4

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris)]

R1 {x/Mary, z/Bob, y/Chris}

R2 no match

R3 no match

Conflict set = [R1:{x/Mary, z/Bob, y/Chris}]

Example: Inference Cycle 5

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),

 grandmother(Mary, Chris)]

R1 no match

R2 no match

R3 no match

Conflict set = []

Exercise: Inference

● What happens if we add the fact

F1 mother(Mary, Bob)

F2 mother(Mary, Alice)

F3 father(Bob, Chris)

F4 mother(Alice,Dan)

R1 mother(x, z) ∧ parent(z, y) → grandmother(x, y)

R2 mother(x, y) → parent(x, y)

R3 father(x, y) → parent(x, y)

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),
 grandmother(Mary, Chris)]

Example: Inference Cycle 6

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),

 grandmother(Mary, Chris)]

R1 no match

R2 {x/Alice, y/Dan}

R3 no match

Conflict set = [R2:{x/Alice, y/Dan}]

Example: Inference Cycle 7

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),

 grandmother(Mary, Chris), parent(Alice, Dan)]

R1 {x/Mary, z/Alice, y/Dan}

R2 no match

R3 no match

Conflict set = [R1:{x/Mary, z/Alice, y/Dan}]

Example: Inference Cycle 8

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),

 grandmother(Mary, Chris), parent(Alice, Dan),

 grandmother(Mary, Dan)]

R1 no match

R2 no match

R3 no match

Conflict set = []

MYCIN

● Developed in the 1970s, Stanford University (Shortliffe &
Buchanan)

● Diagnosis of bacterial infections
● Based on interviews with experts on infectious diseases
● Expert knowledge was reformulated as rules (mostly by

system developers)
● Discovered that knowledge acquisition is a non-trivial

process - human experts find it hard to state all the
knowledge required to solve a problem

● Approximately 500 rules

Example MYCIN Rule

RULE035

PREMISE: ($ AND (SAME CNTXT GRAM GRAMNEG)

 (SAME CNTXT MORPH ROD)
 (SAME CNTXT AIR ANAEROBIC))

ACTION: (CONCLUDE CNTXT IDENTITY BACTEROIDES TALLY .6)

● Which can be translated as:
IF:

the gram stain of the organism is gramneg, and

the morphology of the organism is rod, and

the aerobicity of the organism is anaerobic

THEN:

there is suggestive evidence (.6) that the identity of the organism is bacteroides

More MYCIN

● Some facts and some conclusions of the rules (as above) are not
absolutely certain

● MYCIN uses numerical certainty factors between -1 and 1

● Certainty factors of premises were combined with the tally in the rule
(e.g., 0.6) to give a certainty factor for the conclusions

● Later it turned out that MYCIN’s recommendations would have been the
same if it used only 4 values for certainty factors

● MYCIN was never used in practice due to ethical and legal issues

● When tested on real cases, did as well or better than the faculty
members of the Stanford medical school

XCON

● Developed by McDermott at CMU (1978)
● System for configuring VAX (mini) computers -

used by sales personnel to select system
components based on customer requirements

● Written using OPS5 (language for implementing
production systems, written in LISP)

● 2,500 rules
● Used commercially - by 1986 had processed

80,000 orders and was claimed to be saving DEC
$25m pa.

Implementing Inference

● An expert system shell defines a format for
specifying facts and rules and an
implementation of the inference procedure

● With many rules and many facts, there are two
main problems
● determining which inferences are possible at each

cycle
● determining which of those inferences should

actually be made

Example: Rule Matching

● Given the following facts and rules

F1 son(Mary, Joe)

F2 son(Bill, Bob)

F3 son(Bob, Charles)

F4 daughter(Mary, Alice)

R1 son(x, y) son(∧ y, z) → grandparent(x, z)

● How many matching attempts will there be?

● What is the size of the conflict set?

Example: Rule Matching

● There are 16 matching attempts:

● F1 matches with the first condition of R1, {x/Mary, y/Joe}

● Then an attempt is made to match the second condition of
R1 son(Joe, z) with each of F1, F2, F3 and F4 (all of which
fail)

● We then backtrack and match F2 to the first condition of R1,
{x/Bill, y/Bob}

● Then an attempt is made to match the second condition of
R1 son(Bob, z) with each of F1, F2, F3 and F4 (one of which
succeeds, F3, with z/Charles)

Example: Rule Matching

● We then backtrack and match F3 to the first
condition of R1, {x/Bob, y/Charles}

● Then an attempt is made to match the second
condition of R1 son(Charles, z) with each of F1,
F2, F3 and F4 (all of which fail)

● We then backtrack and try to match F4 to the
first condition of R1 (which fails)

● There is only one rule instance in the conflict
set R1:{x/Bill, y/Bob, z/Charles}

Rule Matching

● Rule firing is usually refractory, i.e., each rule instance fires at most once

● However each rule may match against many combinations of facts in WM
- potentially exponential in the number of facts

● For typical problems, the number of matches is much smaller, but still
needs to be recomputed at each cycle

● Many systems use a Rete network to efficiently determine which rules
match the current contents of working memory

● Based on the assumption that firing a single rule makes only a few
changes to WM, and that these changes typically only affect the
applicability of a few rules

Conflict Resolution

● Firing all the applicable rules can lead to an explosion of
possible inferences at later cycles

● Most systems fire a single rule at each cycle, based on, e.g.:
● lexicographic order: rules are tried in the order they appear in the

program and the first matching rule is fired
● recency: facts in WM are tagged with the inference cycle at which they

were derived - rules that matched more recent facts are preferred
● specificity: prefer more specific rules, i.e., rules with more conditions

or more complex conditions
● weighting: rules are assigned weights or importance values by the

system developer - more important rules are preferred

Conflict Resolution in CLIPS

● In CLIPS each rule has a salience reflecting its importance in
problem solving

● New rule instances are placed above all rule instances of lower
salience and below all rules of higher salience

● If rule instances have equal salience, ties are broken by the
conflict resolution strategy

● CLIPS supports a variety of conflict resolution strategies including
depth, breadth, simplicity, complexity, lex, mea, and random

● Default strategy, depth, gives preference to new rule instances;
breadth places older rule instances higher

● Once the conflict set has been computed, CLIPS fires the highest
ranking rule instance in the conflict set

Example: Travel Advice

● Imagine that we want to give advice about travel destinations

● far destinations are Chile or Kenya Far → Chile ∨ Kenya

● far destinations are international Far → Int

● far destinations are expensive Far → Exp

● In Kenya, yellow fever vaccination is strongly recommended,
and there is a risk of malaria when staying in lodges

 Kenya → Y ellowFever Logde Kenya → Malaria∧
● Accommodation in Kenya is in lodges and in Chile is in hotels

 Kenya → Lodge Chile → Hotel

● When there is a risk of malaria, mosquito nets are recommended

 Malaria → Nets

Example: Travel Advice Clauses

● Clauses

(1) ¬Far ∨ Chile ∨ Kenya

(2) ¬Far ∨ Int

(3) ¬Far ∨ Exp

(4) ¬Kenya Y∨ ellowFever

(5) ¬Lodge ¬∨ Kenya ∨ Malaria

(6) ¬Kenya ∨ Lodge

(7) ¬Chile ∨ Hotel

(8) ¬Malaria ∨ Nets

● Prove that Far and ¬Hotel entails Kenya

● and that Far and ¬Hotel entails Nets

Example: Travel Advice Clauses

● Clauses

(1) ¬Far ∨ Chile ∨ Kenya

(2) ¬Far ∨ Int

(3) ¬Far ∨ Exp

(4) ¬Kenya Y∨ ellowFever

(5) ¬Lodge ¬∨ Kenya ∨ Malaria

(6) ¬Kenya ∨ Lodge

(7) ¬Chile ∨ Hotel

(8) ¬Malaria ∨ Nets

● Premises

(9) Far

(10) ¬Hotel

● Goal

(11) ¬Kenya

Example: Travel Expert System

● We can reformulate the travel advice problem as a set of rules and facts

 (R1a) Far(x) ¬∧ Accommodation(x, lodge) → Destination(x, chile)

 (R1b) Far(x) ¬∧ Accommodation(x, hotel) → Destination(x, kenya)

 (R2) Far(x) → Int(x)

 (R3) Far(x) → Exp(x)

 (R4) Destination(x, kenya) → Risk(x, yellowFever)

 (R5) Accommodation(x, lodge) ∧ Destination(x, kenya) →

 Risk(x, malaria)

 (R6) Destination(x, kenya) → Accommodation(x, lodge)

 (R7) Destination(x, chile) → Accommodation(x, hotel)

 (R8) Risk(x, malaria) → Advised(x, nets)

● Note that the reformulation has changed the problem - without information
about Accommodation, we can’t say anything about the Destination

Example: Travel Expert System

● Given the facts

 (F1) Far(johnsHoliday)

 (F2) ¬Accommodation(johnsHoliday, hotel)

● We can derive first

 (F3) Destination(johnsHoliday, kenya)

● and then on subsequent inference cycles

 (F4) Int(johnsHoliday),

 (F5) Exp(johnsHoliday),

 (F6) Risk(johnsHoliday, yellowFever),

 (F7) Accommodation(johnsHoliday, lodge),

 (F8) Risk(johnsHoliday, malaria),

 (F9) Advised(johnsHoliday, nets)

Comparison with Theorem Proving

● Unlike resolution theorem proving, we don’t need to
know the clause (fact) we want to derive in advance

● Inference is data-driven, chaining forward from
statements about the problem

● If the rules are not carefully chosen, this can result in
the derivation of a large number of irrelevant facts

● Some things are hard to represent or reason about
using definite clauses, e.g.
● Disjunctions - “Chile or Kenya”
● Negations - hard to infer from negative information “I don’t

want to stay in a hotel”

Problem Characteristics

● For the successful development of an expert
system, the problem should
● be solvable by a human in 3-180 minutes
● be primarily cognitive, requiring analysis and

synthesis
● be well defined and confined to a narrow domain
● not involve a great deal of common sense

reasoning
● task knowledge and case studies which are

reasonably complete must be available

Application Areas

● Assistants to human operators
● generating candidate solutions to difficult design,

synthesis or analysis problems
● to evaluate candidate solutions (produced by

humans)

● Autonomous decision making components of
complex systems

● Monitoring the implementation and execution of
designs, plans and schedules

Business Rules

● A business rule is a statement that defines or
constrains some aspect of a business

● Aim is to separate dynamically changing business
procedures, policies and logic from the application
source code

● Rules are declarative and can be easily modified in
response to business needs by non-programmers

● e.g., on-line retail or rental business (see
http://www.businessrulesgroup.org/egsbrg.shtml)

● Rules are executed by a rule engine

Java Rule Engine API

● Java Rule Engine API (JSR-94) is a lightweight
programming interface that defines a standard
API for acquiring and using a rule engine

● Aims to “to reduce the cost associated with
incorporating business logic within applications
and … the need to reduce the cost associated
with implementing platform-level business logic
tools and services”

● See javax.rules and javax.rules.admin
packages

JESS

● Jess is an expert system shell - a rule engine to
which users add their own facts and rules

● Written in Java
● Uses Rete for efficient incremental rule

matching
● Reference implementation of the Java Rule

Engine API

JESS Syntax

● Facts are specified as a predicate followed by a list of slots

 (person (name "Bob Smith") (age 34) (gender Male))

● Rules can be specified in a LISP-like Jess rule language (or XML):

 (defrule young­persons­discount

 (person (name ?name) {age < 21})

 =>

 (assert (eligible­for­discount (name ?n)))

● LHS is a pattern (if a person is less than 21 years old) and RHS is an action
(function call which can add or delete facts or produce output)

Semantic Web

● Aim is to turn information available on the web into a huge
knowledge base (integrated, readable and usable by computer
programs)

● Requires languages for representing knowledge - usually fragments
of predicate calculus with an XML-based syntax, e.g.,

● RuleML - W3C specified interchange format for rules, e.g., business rules,
ontological rules (“cat food is a kind of pet food”) declarative specification of
web services, etc.

● XML-based specification for each ruleset: rule conditions, rule conclusions,
direction (backward, forward, bidirectional)

● Ways of reasoning with the encoded knowledge (intelligent agents)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

