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Lecture 8 – Expert Systems



  

Outline

● Knowledge representation: facts & rules
● Reasoning: forward chaining inference
● Examples of expert systems: MYCIN & XCON
● Implementing inference: rule matching and 

conflict resolution
● Example: conflict resolution in CLIPS
● Applying expert systems
● Rule-based systems redux: business rules and 

the semantic web



  

Expert Systems

● Expert systems are one of the simplest applications of 
knowledge representation and reasoning

● Consists of a set of facts, a set of rules and an 
implementation of the inference procedure

● Support reasoning about a particular (narrow) domain 
in a tightly controlled way

● Wide range of applications including medical diagnosis, 
minicomputer configuration, camera lens design, loan 
approvals, fault diagnosis etc. - often as part of a larger 
system

● One of the first commercial applications of AI



  

Advantages of Expert Systems

● Order or magnitude increases in the speed with 
which complex tasks can be performed

● Increased quality of decisions or solutions (or 
reduction in the number of errors)

● Reduction in cost and number of personnel 
required and/or reduced training time (tasks are 
de-skilled)

● Formalisation and retention of organisational or 
business knowledge



  

Facts & Rules

● In an expert system, knowledge is represented as facts and rules 
using a simplified form of predicate calculus

● Facts are ground (usually atomic) formulas, e.g., Man(Socrates), 
stored in working memory

● Some facts are generic, while others are specific to a particular 
problem instance

● Rules are universally quantified clauses - often with single 
positive literal (definite clauses), e.g., ¬p  ¬∨ q  ∨ r ≡ (p  ∧ q) → r

● A rule C
1
 …  ∧ ∧ C

n
 → A consists of one or more conditions C

1
…

C
n
 and a single action A

● All variables appearing in C
1
…C

n
 and A are assumed to be 

universally quantified



  

Inference

● Usually forward chaining (modus ponens) with 
variable substitution

P(a), ∀x (P(x) → Q(x))

Q(a)

● For example, from the fact Man(socrates) and the 
rule ∀x (Man(x) → Mortal(x)) we can derive that

Man(socrates), ∀x (Man(x) → Mortal(x))

Mortal(socrates)

using the substitution θ = {x/socrates}
● Inference is sound but (typically) not complete



  

Rule Syntax

● To simplify development, rules are often written in a 
simplified form of English which omits the quantifiers

● For example, the rule (definite clause)

∀x, ∀y (PremiumCustomer(x) ^ LuxuryProduct(y) → 
Discount(x, y, 7.5%))

might be written

IF PremiumCustomer(x) AND LuxuryProduct(y) 
THEN Discount(x, y, 7.5%)

● Sometimes referred to as ‘production rules’, ‘if-then 
rules’ or ‘condition action rules’



  

Inference Cycle

● At each cycle, the LHS of each rule (its antecedent) is 
matched against the facts currently in working memory

● Matching involves comparing each condition in the LHS of 
a rule in turn with each fact in working memory to see if a 
unifying substitution can be found which satisfies all the 
conditions

● Rules where all the conditions can be matched (and all 
the variables bound) are said to be applicable

● The set of applicable rule instances is called the conflict 
set



  

Inference Cycle

● One (or more) members of the conflict set are 
‘fired’ which performs the action on the RHS of 
the rule, e.g.:
● adds a fact (or facts) to working memory
● deletes a fact (or facts) from working memory
● produces a side effect, e.g., prints some output

● Cycle then repeats until one or more facts 
(representing a solution to the problem) appear 
in working memory or until no more rules can be 
fired



  

Example

● Given the following facts and rules

F1 mother(Mary, Bob)

F2 mother(Mary, Alice)

F3 father(Bob, Chris)

R1 mother(x, z)  ∧ parent(z, y) → grandmother(x, y)

R2 mother(x, y) → parent(x, y)

R3 father(x, y) → parent(x, y)



  

Example: Inference Cycle 1

WM = [ mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris) ]

R1 no match

R2 {x/Mary, y/Bob}, {x/Mary, y/Alice}

R3 {x/Bob, y/Chris}

Conflict set = 

[ R2:{x/Mary, y/Bob}, R2:{x/Mary, y/Alice}, R3:{x/Bob, y/Chris} ]



  

Example: Inference Cycle 2

WM = [ mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob)]

R1 no match

R2 {x/Mary, y/Alice}

R3 {x/Bob, y/Chris}

Conflict set = [ R2:{x/Mary, y/Alice}, R3:{x/Bob, y/Chris} ]



  

Example: Inference Cycle 3

WM = [ mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice)]

R1 no match

R2 no match

R3 {x/Bob, y/Chris}

Conflict set = [ R3:{x/Bob, y/Chris} ]



  

Example: Inference Cycle 4

WM = [ mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris)]

R1 {x/Mary, z/Bob, y/Chris}

R2 no match

R3 no match

Conflict set = [ R1:{x/Mary, z/Bob, y/Chris} ]



  

Example: Inference Cycle 5

WM = [ mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),

 grandmother(Mary, Chris) ]

R1 no match

R2 no match

R3 no match

Conflict set = [ ]



  

Exercise: Inference

● What happens if we add the fact

F1 mother(Mary, Bob)

F2 mother(Mary, Alice)

F3 father(Bob, Chris)

F4 mother(Alice,Dan)

R1 mother(x, z)  ∧ parent(z, y) → grandmother(x, y)

R2 mother(x, y) → parent(x, y)

R3 father(x, y) → parent(x, y)

WM = [ mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),
 grandmother(Mary, Chris) ]



  

Example: Inference Cycle 6

WM = [ mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),

 grandmother(Mary, Chris) ]

R1 no match

R2 {x/Alice, y/Dan}

R3 no match

Conflict set = [ R2:{x/Alice, y/Dan} ]



  

Example: Inference Cycle 7

WM = [ mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),

 grandmother(Mary, Chris), parent(Alice, Dan) ]

R1 {x/Mary, z/Alice, y/Dan}

R2 no match

R3 no match

Conflict set = [ R1:{x/Mary, z/Alice, y/Dan} ]



  

Example: Inference Cycle 8

WM = [ mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),

 parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),

 grandmother(Mary, Chris), parent(Alice, Dan),

 grandmother(Mary, Dan) ]

R1 no match

R2 no match

R3 no match

Conflict set = [  ]



  

MYCIN

● Developed in the 1970s, Stanford University (Shortliffe & 
Buchanan)

● Diagnosis of bacterial infections
● Based on interviews with experts on infectious diseases
● Expert knowledge was reformulated as rules (mostly by 

system developers)
● Discovered that knowledge acquisition is a non-trivial 

process - human experts find it hard to state all the 
knowledge required to solve a problem

● Approximately 500 rules



  

Example MYCIN Rule

RULE035

PREMISE: ($ AND (SAME CNTXT GRAM GRAMNEG)

 (SAME CNTXT MORPH ROD)
 (SAME CNTXT AIR ANAEROBIC))

ACTION: (CONCLUDE CNTXT IDENTITY BACTEROIDES TALLY .6)

● Which can be translated as:
IF:

the gram stain of the organism is gramneg, and

the morphology of the organism is rod, and

the aerobicity of the organism is anaerobic

THEN:

there is suggestive evidence (.6) that the identity of the organism is bacteroides



  

More MYCIN

● Some facts and some conclusions of the rules (as above) are not 
absolutely certain

● MYCIN uses numerical certainty factors between -1 and 1

● Certainty factors of premises were combined with the tally in the rule 
(e.g., 0.6) to give a certainty factor for the conclusions

● Later it turned out that MYCIN’s recommendations would have been the 
same if it used only 4 values for certainty factors

● MYCIN was never used in practice due to ethical and legal issues

● When tested on real cases, did as well or better than the faculty 
members of the Stanford medical school



  

XCON

● Developed by McDermott at CMU (1978)
● System for configuring VAX (mini) computers - 

used by sales personnel to select system 
components based on customer requirements

● Written using OPS5 (language for implementing 
production systems, written in LISP)

● 2,500 rules
● Used commercially - by 1986 had processed 

80,000 orders and was claimed to be saving DEC 
$25m pa.



  

Implementing Inference

● An expert system shell defines a format for 
specifying facts and rules and an 
implementation of the inference procedure

● With many rules and many facts, there are two 
main problems
● determining which inferences are possible at each 

cycle
● determining which of those inferences should 

actually be made



  

Example: Rule Matching

● Given the following facts and rules

F1 son(Mary, Joe)

F2 son(Bill, Bob)

F3 son(Bob, Charles)

F4 daughter(Mary, Alice)

R1 son(x, y)  son(∧ y, z) → grandparent(x, z)

● How many matching attempts will there be?

● What is the size of the conflict set?



  

Example: Rule Matching

● There are 16 matching attempts:

● F1 matches with the first condition of R1, {x/Mary, y/Joe}

● Then an attempt is made to match the second condition of 
R1 son(Joe, z) with each of F1, F2, F3 and F4 (all of which 
fail)

● We then backtrack and match F2 to the first condition of R1, 
{x/Bill, y/Bob}

● Then an attempt is made to match the second condition of 
R1 son(Bob, z) with each of F1, F2, F3 and F4 (one of which 
succeeds, F3, with z/Charles)



  

Example: Rule Matching

● We then backtrack and match F3 to the first 
condition of R1, {x/Bob, y/Charles}

● Then an attempt is made to match the second 
condition of R1 son(Charles, z) with each of F1, 
F2, F3 and F4 (all of which fail)

● We then backtrack and try to match F4 to the 
first condition of R1 (which fails)

● There is only one rule instance in the conflict 
set R1:{x/Bill, y/Bob, z/Charles}



  

Rule Matching

● Rule firing is usually refractory, i.e., each rule instance fires at most once

● However each rule may match against many combinations of facts in WM 
-  potentially exponential in the number of facts

● For typical problems, the number of matches is much smaller, but still 
needs to be recomputed at each cycle

● Many systems use a Rete network to efficiently determine which rules 
match the current contents of working memory

● Based on the assumption that firing a single rule makes only a few 
changes to WM, and that these changes typically only affect the 
applicability of a few rules



  

Conflict Resolution

● Firing all the applicable rules can lead to an explosion of 
possible inferences at later cycles

● Most systems fire a single rule at each cycle, based on, e.g.:
● lexicographic order: rules are tried in the order they appear in the 

program and the first matching rule is fired
● recency: facts in WM are tagged with the inference cycle at which they 

were derived - rules that matched more recent facts are preferred
● specificity: prefer more specific rules, i.e., rules with more conditions 

or more complex conditions
● weighting: rules are assigned weights or importance values by the 

system developer - more important rules are preferred



  

Conflict Resolution in CLIPS

● In CLIPS each rule has a salience reflecting its importance in 
problem solving

● New rule instances are placed above all rule instances of lower 
salience and below all rules of higher salience

● If rule instances have equal salience, ties are broken by the 
conflict resolution strategy

● CLIPS supports a variety of conflict resolution strategies including 
depth, breadth, simplicity, complexity, lex, mea, and random

● Default strategy, depth, gives preference to new rule instances; 
breadth places older rule instances higher

● Once the conflict set has been computed, CLIPS fires the highest 
ranking rule instance in the conflict set



  

Example: Travel Advice

● Imagine that we want to give advice about travel destinations

● far destinations are Chile or Kenya  Far → Chile  ∨ Kenya

● far destinations are international   Far → Int

● far destinations are expensive   Far → Exp

● In Kenya, yellow fever vaccination is strongly recommended, 
and there is a risk of malaria when staying in lodges

 Kenya → Y ellowFever Logde  Kenya → Malaria∧
● Accommodation in Kenya is in lodges and in Chile is in hotels

 Kenya → Lodge Chile → Hotel

● When there is a risk of malaria, mosquito nets are recommended

 Malaria → Nets



  

Example: Travel Advice Clauses

● Clauses

(1)  ¬Far  ∨ Chile  ∨ Kenya

(2)  ¬Far  ∨ Int

(3)  ¬Far  ∨ Exp

(4)  ¬Kenya  Y∨ ellowFever

(5)  ¬Lodge  ¬∨ Kenya  ∨ Malaria

(6)  ¬Kenya  ∨ Lodge

(7)  ¬Chile  ∨ Hotel

(8)  ¬Malaria  ∨ Nets

● Prove that Far and ¬Hotel entails Kenya

● and that Far and ¬Hotel entails Nets



  

Example: Travel Advice Clauses

● Clauses

(1)  ¬Far  ∨ Chile  ∨ Kenya

(2)  ¬Far  ∨ Int

(3)  ¬Far  ∨ Exp

(4)  ¬Kenya  Y∨ ellowFever

(5)  ¬Lodge  ¬∨ Kenya  ∨ Malaria

(6)  ¬Kenya  ∨ Lodge

(7)  ¬Chile  ∨ Hotel

(8)  ¬Malaria  ∨ Nets

● Premises

(9) Far

(10) ¬Hotel

● Goal

(11) ¬Kenya



  

Example: Travel Expert System

● We can reformulate the travel advice problem as a set of rules and facts

 (R1a) Far(x)  ¬∧ Accommodation(x, lodge) → Destination(x, chile)

 (R1b) Far(x)  ¬∧ Accommodation(x, hotel) → Destination(x, kenya)

 (R2) Far(x) → Int(x)

 (R3) Far(x) → Exp(x)

 (R4) Destination(x, kenya) → Risk(x, yellowFever)

 (R5) Accommodation(x, lodge)  ∧ Destination(x, kenya) → 

   Risk(x, malaria)

 (R6) Destination(x, kenya) → Accommodation(x, lodge)

 (R7) Destination(x, chile) → Accommodation(x, hotel)

 (R8) Risk(x, malaria) → Advised(x, nets)

● Note that the reformulation has changed the problem - without information 
about Accommodation, we can’t say anything about the Destination



  

Example: Travel Expert System

● Given the facts

 (F1) Far(johnsHoliday)

 (F2) ¬Accommodation(johnsHoliday, hotel)

● We can derive first

 (F3) Destination(johnsHoliday, kenya)

● and then on subsequent inference cycles

 (F4) Int(johnsHoliday),

 (F5) Exp(johnsHoliday),

 (F6) Risk(johnsHoliday, yellowFever),

 (F7) Accommodation(johnsHoliday, lodge),

 (F8) Risk(johnsHoliday, malaria),

 (F9) Advised(johnsHoliday, nets)



  

Comparison with Theorem Proving

● Unlike resolution theorem proving, we don’t need to 
know the clause (fact) we want to derive in advance

● Inference is data-driven, chaining forward from 
statements about the problem

● If the rules are not carefully chosen, this can result in 
the derivation of a large number of irrelevant facts

● Some things are hard to represent or reason about 
using definite clauses, e.g.
● Disjunctions - “Chile or Kenya”
● Negations - hard to infer from negative information “I don’t 

want to stay in a hotel”



  

Problem Characteristics

● For the successful development of an expert 
system, the problem should
● be solvable by a human in 3-180 minutes
● be primarily cognitive, requiring analysis and 

synthesis
● be well defined and confined to a narrow domain
● not involve a great deal of common sense 

reasoning
● task knowledge and case studies which are 

reasonably complete must be available



  

Application Areas

● Assistants to human operators
● generating candidate solutions to difficult design, 

synthesis or analysis problems
● to evaluate candidate solutions (produced by 

humans)

● Autonomous decision making components of 
complex systems

● Monitoring the implementation and execution of 
designs, plans and schedules



  

Business Rules

● A business rule is a statement that defines or 
constrains some aspect of a business

● Aim is to separate dynamically changing business 
procedures, policies and logic from the application 
source code

● Rules are declarative and can be easily modified in 
response to business needs by non-programmers

● e.g., on-line retail or rental business (see 
http://www.businessrulesgroup.org/egsbrg.shtml)

● Rules are executed by a rule engine



  

Java Rule Engine API

● Java Rule Engine API (JSR-94) is a lightweight 
programming interface that defines a standard 
API for acquiring and using a rule engine

● Aims to “to reduce the cost associated with 
incorporating business logic within applications 
and … the need to reduce the cost associated 
with implementing platform-level business logic 
tools and services”

● See javax.rules and javax.rules.admin 
packages



  

JESS

● Jess is an expert system shell - a rule engine to 
which users add their own facts and rules

● Written in Java
● Uses Rete for efficient incremental rule 

matching
● Reference implementation of the Java Rule 

Engine API



  

JESS Syntax

● Facts are specified as a predicate followed by a list of slots

 (person (name "Bob Smith") (age 34) (gender Male))

● Rules can be specified in a LISP-like Jess rule language (or XML):

  (defrule young­persons­discount

    (person (name ?name) {age < 21})

      =>

    (assert (eligible­for­discount (name ?n)))

● LHS is a pattern (if a person is less than 21 years old) and RHS is an action 
(function call which can add or delete facts or produce output)



  

Semantic Web

● Aim is to turn information available on the web into a huge 
knowledge base (integrated, readable and usable by computer 
programs)

● Requires languages for representing knowledge - usually fragments 
of predicate calculus with an XML-based syntax, e.g.,

● RuleML - W3C specified interchange format for rules, e.g., business rules, 
ontological rules (“cat food is a kind of pet food”) declarative specification of 
web services, etc.

● XML-based specification for each ruleset: rule conditions, rule conclusions, 
direction (backward, forward, bidirectional)

● Ways of reasoning with the encoded knowledge (intelligent agents)
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